
 SPIDER, sensorlab programming and development 1

Spider Programming Manual

© Steim Foundation

 SPIDER, sensorlab programming and development 2

PREFACE

Welcome to SPIDER, a language & development system used
to define and program electronic musical instruments (midi
controllers) using the STEIM SensorLab. The SensorLab is a
hardware device capable of converting real-world data
(sensors) into midi data. The relation between the sensor
inputs and the midi data produced by the SensorLab is
defined by a ‘program’ or ‘configuration file’ written in the
SPIDER language. This program is written in and translated by
the SPIDER development system and sent to the SensorLab
through midi System Exclusive. Once in the SensorLab the
program will completely determine what the Sensorlab’s
response to the sensor data will be. When you’re satisfied
the configuration will stay in the SensorLab and the host
computer (apple macintosh) will no longer be needed.

This manual will guide you through the system, describing
the development environment and the SPIDER language
proper. Since the system is made for performing artists,
many of whom will have no or very little programming
experience, I will go into much detail where the SPIDER
programming language is concerned, using many explicit
examples. More experienced programmers could find this a
bit tiring and may want to skip sections. Users completely
new to computer programming may want to read an
introductory book on computer programming in general.
SPIDER is a very specific language, but many of the general
programming concepts are similar to other languages, most
of all to the programming language ‘C’.

SPIDER is a very dangerous tool, it is very easy to do an
awful lot of things, including making serious mistakes which
might completely spoil your performance or piece. Finding
errors in computer programs, even programs written is a
relatively simple language like SPIDER, can be a long and
tedious business. The SPIDER development environment helps
a bit, but only careful work and a lot of testing will get you
to where you want to be.

The SPIDER / SensorLab combination is a system in
developement, suggestions and remarks are welcome. Please
feed back.

Tom Demeyer.

 SPIDER, sensorlab programming and development 3

System requirements & installation

SPIDER runs on all apple powermacintosh computers
running system 7.6 or later. It requires a modest amount of
memory, and the speed on the older mac’s is perfectly
acceptable. In order to be able to test your code and do
something useful with it you will need to have OMS installed
on your system. When not installed, SPIDER will give you a
message telling you so, but will allow you to continue editing
you code. You will not be able to test it, however. SPIDER will
allow you to compile your code and warn you of any
syntactical errors, but logical errors in the code will only be
detected once you’ve sent the compiled code to the
SensorLab and have run it through its paces. To install SPIDER
on your mac simply copy it to to directory of your choice.

Hardware installation

All communication between SPIDER and the SensorLab is
done through midi. A fairly typical development setup would
have a midi cable running from the mac midi-out to the
SensorLab midi-in, from the SensorLab midi-out to your midi
equipment (the midi machines you’ll be using in your actual
performance) and from the midi-thru port of your midi-
equipment back to the midi-in port of your macintosh. This
will allow you to write code, compile and send it to the
SensorLab, and while testing your code on the actual
instrument (or whatever setup you’ve connected to the
SensorLab), check the midi data coming out of the SensorLab
on SPIDER’s built in midi-monitor.

If you have a completely virginal SensorLab the
SensorLab’s error leds (the two yellow leds on the front
panel) will indicate an invalid configuration by keeping the
left led steady while blinking the right. To test connections
and setup you can start up SPIDER, which will open with a
blank ‘Untitled’ file. When you now choose ‘Send’ from the
SensorLab menu an empty (but valid) configuration will be
sent to the SensorLab. This should, if all is connected well,
cause the error indicators to switch off. If your SensorLab is
not empty and your error leds are not blinking, choose ‘Stop
SensorLab’ from the monitor menu. This should start the
right-hand led blinking, indicating a ‘stopped’ state (more
about this later).

 SPIDER, sensorlab programming and development 4

The Spider editor and development
environment

SPIDER’s built in programming editor is a basic, some frills,
editor without much sophistication. It is not strictly
necessary to use SPIDER’s built in editor, as long as you
produce ‘TEXT’ (a word processor in ‘text’ or ‘ascii’ mode)
files you can use any program you like. SPIDER will be able to
read them in and compile them.

Once properly hooked up to a SensorLab a typical
development cycle would go from a bit of editing through to
the ‘send ‘ command, then a bit of testing with the
instrument under development, checking SensorLab output
on the attached midi instruments and the SPIDER monitor and
back to a bit of editing.

Let’s tour the menus in order:

File
New _N This will open a new, untitled window,

ready for immediate input, you will be
asked for a name when you save this file,
or add it to a project (see Project)
through the standard macintosh file
selector dialog box.

Open _O Brings up the standard file selector,
allowing you to open a TEXT or SPIDER file
of your choice for editing.

Close _W Closes the top window, if the file has been
modified since the last save you will be
prompted whether to save the file before
closing.

Save _S Saves the file in the top window to disk.
Save as... Brings up the standard file selector for

you to choose a new filename for the file
in the top window and saves it to disk.

Revert Replaces, after prompting for
confirmation if the file has been changed
since the last save, the file in the top
window with the last version saved to
disk.

Page Setup... Gets the standard mac page setup
dialog up on the screen to allow you to
change some printing parameters.

Print... _P Prints, after displaying the standard print

 SPIDER, sensorlab programming and development 5

dialog, a basic, no frills, version of the file
in the top window.

Quit _Q Quits SPIDER, asking to save any unsaved
work.

Edit
Cut _X
Copy _C
Paste _V
Clear Standard mac editing commands, see

macintosh user guide if you are unsure.
Find... _F Brings up the Find dialog. Enter the text

you want to search for in the top edit box
and press Ok to find the first occurrence
of the text. The search commences
towards the end of the file and continues
at the beginning until the whole file is
scanned. When the ‘ignore case’ button is
checked the search will be case
insensitive. Text can optionally be
replaced by something else by entering
the replacement text into the second edit
box in the find dialog (see next entries).

Find again _G
Searches for the next occurrence of the
last text entered in the find dialog.

Replace & find again _H
Replaces the current selection (may or
may not be selected by a Find command)
with the text in the replace box of the
find dialog, then proceeds to find the next
occurrence of the text in the find box of
the find dialog.

Match braces _B
This will select the block of text between
the innermost pair of braces - ‘{‘ and ‘}’ -
around the insertion point.

SensorLab

Compile _K This function, only available when a
text window is topmost, will compile the
text in the front window, bringing an error
window to the front if necessary. If there
have been no changes since the last
compile command nothing will happen. In
the error window, clicking on an error line

 SPIDER, sensorlab programming and development 6

will bring the corresponding text file to
the front with the offending line selected.
If a project file is open the compile
command will start compiling all the files
in the project in the order in which they
appear in the project (see the Project
menu entry).

Send _T This command will first perform a compile
step (see above) and then, if no errors are
found, it will send all information which
has changed since the last ‘send’ or ‘send
all’ command to the connected SensorLab.
Care should be taken if there has been any
mucking around with midi cables between
‘send’ commands, because SPIDER may in
that case have a wrong picture of what
exactly is already in the SensorLab, and
thus might not send enough information to
the SensorLab after a successful compile.
As a rule of thumb, after changing cables
or in any other way changing the setup,
use the ‘send all’ command instead of the
‘send’ to make sure that both SPIDER and
the SensorLab agree on the state both are
in. Send will automatically revert to
‘send all’ the first time it is used. Also,
after sending a syntactically correct but
otherwise disastrous program to the
SensorLab, the SensorLab may be in a
state where its memory is corrupted to
such an extend that a Send all command
is necessary to restore the SensorLab to a
healthy state.

Send all _A See Send, the difference is that all
information is sent to the SensorLab,
taking more time than the send command,
but making sure SPIDER and the SensorLab
are synchronized with respect to the
compiled image of the SPIDER code in their
memory.

Monitor

Open monitor _M This will open the midi monitor
window, allowing you to see whatever
comes in on the mac’s midi in port, and to
send out any midi command using the

 SPIDER, sensorlab programming and development 7

narrow text input box at the bottom.
Incoming midi data is sorted left to right
according to the status of the message;
from left to right: note on and note off,
controllers, pitch bend, channel pressure,
program change, poly key pressure and at
the right system exclusive messages. The
monitor comes up in hexadecimal display
mode, allowing you to see at a glance
which midi channel a particular message
came in on. When sending out midi using
the monitor you are expected to type
hexadecimal bytes into the text box too.
The text box keeps a couple of lines in a
buffer, saving you a lot of typing in some
cases. To retrieve a previous line just use
the cursor up (arrow up) key on your
keyboard; the previously typed lines will
come scrolling by, ready for editing or
immediate transmission by hitting
<return>. Typing the word “version” will
give you the version date of the SensorLab
rom software (if a SensorLab is attached
of course).

Clear monitor <esc>
Clears the midi input buffers and the
monitor window, bringing it to the front if
necessary. This command can also be
executed by hitting the escape key at any
time.

Start lab If the SensorLab is in a stopped state (see
below) this command will send a start
message to the SensorLab.

Stop lab Sometimes the SensorLab is sending midi
in such quantities that the mac is so busy
updating the monitor window that
response is becoming to slow. In this
situation it is sometimes very convenient
to be able to shut the SensorLab up
(especially when you have some noisy
equipment attached as well). This
command will send a system exclusive
message to the SensorLab which will
cause it to stop processing the attached
sensors. The rightmost yellow led on the
SensorLab will start blinking, indicating
that it is in a stopped state. To start the

 SPIDER, sensorlab programming and development 8

SensorLab again you have several options.
Use the start lab command, reset the
SensorLab or use the send or send all
commands.

Decimal output or Hex output
Will toggle the monitor’s display and send
midi number system. The current number
system will be indicated in the lower left
hand corner of the monitor window.

 SPIDER, sensorlab programming and development 9

Spider sensor subsystems

Following will be a short description of the various SPIDER
sensor subsystems, a more detailed description of each of
these will be given in the language reference section of this
manual where the specific sensor declarations are
discussed. The keywords dgroup, analog, usound,
timer and, for midi inputs, midi_non, midi_nof,
midi_ctr, midi_pbd, midi_pkp, midi_pgc and
midi_prs all define a sensor subsystem, an input from the
programmer’s point of view. This input will, when defined,
generate an event which usually needs to be dealt with. You
‘deal’ with an event by writing a -generally small- section of
SPIDER code, to be executed by the SensorLab when this
event occurs. See SPIDER language reference further down in
this manual for information on how to actually implement
all this.

The dgroup system:

 Digital keys (simple make/break or pushbutton switches)
are defined in SPIDER through the dgroup command. Before
simply defining all the keys used, it is necessary to think of
the functions the keys will have and split these keys into
functional groups. It makes sense, for instance, to have keys
controlling the function of other keys separate from keys
that just generate midi notes. Through the concept of
keygroups SPIDER allows keys which have a similar function
to have the same name, by which they are programmed. Also,
these named groups provide the possibility to swap the
functions of whole bunches of keys simultaneously.

In order to be able to assign a function (or action) to a key,
to be executed when the up- or down status of the key
changes, the following naming scheme has been adopted:

 KeyGroupName.keynumber.mode.dir:

is the label to which a particular piece of code is assigned.
Every time the key concerned is pressed or released the code
starting at this label is executed up to the first end
statement.

 KeyGroupName
Is the name of the group the key belongs to, a name best
chosen to reflect the function of the key.

 keynumber

 SPIDER, sensorlab programming and development 10

Is the ranking number of the key within the definition of this
particular group (see example in DGROUP)

 mode
Is the mode a key is in, preceded by the letter 'm'. It is not
necessary to explicitly give the mode - number '1', for
dgroups, this is the default mode and the ‘m1’ can just be
left out (‘m1’ must be supplied for the other inputs, though.

 dir
Is the direction, the letter 'u' or the letter 'd', meaning the
up event or the down- event of the key. A typical example
would be a midi note-on at the down-event and the
corresponding note off at the up event. See the dgroup
command for more information and examples.

The analog system

There are 32 analog input channels available, with 8 bit
resolution. The user has available a programmable
attenuator/gain, programmable offset voltage and polarity,
and a programmable inverter. These parameters are given
their default values in the declaration of the analog channel,
but can also be changed dynamically for use in more
sophisticated designs. Experience shows that 'tuning' the
analog channels for a given instrument design can be one of
the most time consuming parts of the programming phase.
After a rough approximation it is usually a matter of trial and
error before a satisfactory response is obtained. The use of
dynamically changing gain, and offset voltages allows a
theoretical resolution of more than eight bits, the user
changing the response of the a/d converter according to its
output. It should be noted, however, that this will be a time
consuming process in terms of development and ‘tuning’
time. See the analog command description for further
information.

The ultrasound system:

Provided for are two ultrasound transmitters and three
ultrasound receivers, giving a total of 6 ultrasound channels.
The ultrasound system is used to measure the distance
between transmitter and receiver. In controlled situations
transmitter and receiver may be mounted side by side, in
order to measure the distance (times two) to a sound-
reflecting surface. The system offers an accuracy of better
than 1/3rd of a millimeter on short distance scales. The
maximum practical distance over which the system may still

 SPIDER, sensorlab programming and development 11

work reliably will be around 10 meters, maybe as much as
15. With increasing distance the response will suffer, though,
because the decision that the sound pulse is ‘lost’ can only be
taken after a longer time. The user has, for each channel,
control over where (in space) the start point is located,
meaning that the variables will only be updated when the
distance is larger than this value, and the length of the
active area. These ‘active areas’ can, for each channel, be
given more than once, resulting (provided the start point and
length define areas that don't overlap) in several distinct
‘responsive areas’ within the trajectory from transmitter to
receiver. One may in this way define, for instance,
continuous response between 5 cm and 1 meter, a trigger
between 150 cm and 152 cm, and again a continuous area
from 2 to 4 meters. The order in which the channels are
defined is the same as the physical order on the connectors.
The first three channels defined will react to transmitter one,
the second three to transmitter two. If one receiver and two
transmitters are to be used one should (apart from
considering to use one transmitter and two receivers -
amounting to the same thing) define four ultrasound
channels of which the second and third dump their data into
dummy variables. See also usound command.

The midi-in system

The SensorLab allows for 32 midi-input ‘sensors’, triggering
a section of SPIDER code whenever one of the specified midi
messages is seen on the lab’s midi input port. These could
just send the message back out, (providing a ‘programmed
thru’ for which there is a faster generic thru command) or
do something different altogether. The midi parameters of
the incoming message constitute the ‘sensor’s’ data and are
available to the SPIDER code.

The timer system

The SensorLab has available 16 timers, which can be set to
trigger a piece of program at regular intervals. These
intervals can be changed dynamically. The timers are not
meant for sequencing or other jobs which require accurate
timing; they are not good enough. Depending on the load of
the SensorLab the ticks may be delayed a bit. Resolution of
the timers is in 100th’s of seconds @16Mhz (the standard
setting, see hardware manual).

 SPIDER, sensorlab programming and development 12

Spider language reference

General structure of a spider program

A SPIDER program starts with a series of declarations, here
the various analog, ultrasound, switches, midi inputs and
timers are declared and configured, vars and tables are
declared here as well, usually. These declarations do not
necessarily have to be at the beginning of a file, although it
will do a lot towards general legibility when all this stuff is
grouped together. A restriction is that things will need to be
declared before they are used (with the exeption of labels).
If the configuration (SPIDER file) is going to be big it makes
sense to put all declarations in a separate file, open a
project for your work and put the declarations file at the
top.

All declarations except the var and table declarations
set up events; (a key closure, a change in analog voltage or
ultrasound distance, a timer expiring or a midi message
coming in). These events make the SensorLab jump to one of
eight predefined sections of code - one for each of the
modes (see below) a sensor subsystem can be in.

This means that for each event generating declaration you
will have to write a minimum of one and a maximum of eight
sections of SPIDER code.

Modes:

All the sensor subsystems can be in one of eight modes,
they all start out, after a reset, in mode 1. A different mode
simply means that a different section of code is associated
with the same sensor. A key, for instance, may send out a
note in mode one, and a program change in mode two.
Modes are selected for each defined input using the swap
command. Dgroup keys are a bit special; when they are
swapped to a different mode all the keys that are
currently in a ‘closed’ or ‘down’ situation and are in the
keygroup which is swapped, receive a simulated key-up
event before being swapped to the new mode. After the
swap a ‘down’ event is simulated again. This feature is
designed specially to avoid ‘hanging notes’ on connected
synthesizers when swapping midi-channel, or changing, for
instance, a global transposition offset, but can be made use
of in different situations as well.

The SensorLab associates different sections of code with

 SPIDER, sensorlab programming and development 13

the different event generating systems in their various
possible modes through a system of labels.

Each input declaration statement supplies an identifier, the
name by which that particular input will be know in the rest
of the file. It makes for readable code when this name
reflects the purpose of the input it is referring to. This name
will be used to specify the sections of code belonging to that
input. The name will also be used to address the input value
(for analog, usound and midi_in inputs) and can in some
cases be used to acces the input’s control data structure. To
address one of the eight possible sections of event handling
code -for all inputs except the dgroup- the name is used as
follows:

name.mx: // the x to be replaced by one of 1 - 8 for the 8 modes

(code

 here ...)

To acces the value of an input the name is used as if it
were declared as a var, with the difference that writing to
these ‘vars’ is not permitted. In the case of a timer input
writing is permitted, to change the resolution of the timer
and to restart, when necessary.

var newNote;

midi_non inNote,omni; // define input ‘inNote’

inNote.m1: // label for midi_non input ‘inNote’

// when in mode 1.

newNote = inNote; // get the ‘value’ of the input inNote

end; // in this case the midi note number

Dgroup labeling is more elaborate, see the section on
droup above, and the dgroup keyword entry. Examples
will be found in the sections dealing with the declarative
keywords themselves.

Labels can also be declared independent from events, then
they are just an identifier followed by a colon (:).

sustain_on:

panic:

_switch_channel:

WeIrD_cAsInG:

are all valid labels. They are used as targets for the goto
and call keywords. A special label reset: is used to define

 SPIDER, sensorlab programming and development 14

a reset routine, which is executed when the SensorLab is
switched on, or when the SensorLab is manually reset. It can
also be jumped to, it acts as a normal label.

The sections of SPIDER code themselves are basically a
series of statements terminated by an end statement.
Statements are either single statements or compound
statements, the latter being a means of grouping statements
so that they can be referred to as a single entity for use in if
, else and while statements. Compound statements are a
set of single statements enclosed by curly braces ({ and });
See the sections on the if or the while keywords for
examples. A single statement is always terminated by a
semicolon, just like in ‘C’.

The double forward slash (//) is a comment, this will
cause the compiler to ignore everything following it until the
end of the line on which it appears.

Variables and tables

SPIDER has basically two types of variable, the 16 bit
integer and the table of 8 bit integers. Variables and tables
are used through an identifier - a name, if you like.
Identifiers always start with a letter or an underscore (_)
and are followed by any length of alphanumerical symbols
(letters, digits or the underscore). Identifiers are case
insensitive; myVar, MYVAR and myvar all refer to the same
variable. All assignment and arithmetical operations on
variables work with 16 bits, except in the following cases,
where only the least significant (low) byte is used:
• In table addressing mode; this is used whenever

addressing an element of a table by using a table
name with an offset as in a = convert[b]; (see the
table keyword). This mode can also be used to get
pieces of a variable declared through a normal var
statement; see var.

• When addressing the input systems; analog,
ultrasound, and midi-in input variables always have an
8 bit result, the high byte (the most significant byte) is
zeroed. In other respects they behave just as normal
variables, although assignment to these variables
clearly makes no sense.

 SPIDER keywords 15

Expressions:

At many places later in this manual you will find the word
'expr'; this stands for 'expression' and should be read as:

• a number, which can be either ordinary decimal 1, 2, -
765, etc, or hexadecimal: $1, $2, $15, $77f, etc. One can
also use character literals of the form ‘a’ or ‘7’; note
the apostrophes, they are part of the syntax. These
character literals are immediately converted into their
ascii number equivalent and act just as numbers. So ‘A’
and 65 are identical ‘numbers’ as far as SPIDER is
concerned. All numbers are 16 bit integers, running
from -32768 to 32767 inclusive. With midi commands
only the least significant 4 bits (for the channel) or
least significant 7 bits (for other parameters) are used.
This can be seen as only using the remainder after
division by 16 (4 bits) or 128 (7 bits). With negative
numbers it might get a bit confusing, -1 becoming 127
or 15; -2 will be 14 or 126 etc.

• an identifier, that is, a variable name which has to
have been declared before it is used in any expression.

• Any combination of the above strung together with any
of the following operators. Operators are given in
order of precedence, i.e. if you see something like 'a + b
* c', 'b*c' will be evaluated first, then a + (b*c). In this
case one says that the '*' operator takes precedence
over the '+' operator. In the table below operators
with the highest precedence are given first. Operators
in the same section have equal precedence and are
'left binding'. Left binding means 'a * b / c' will be
evaluated as (a*b) / c; i.e. is evaluated from the left.
An expression can also contain a random(max) statement,
which will produce a random number from 0 to max-1
inclusive. Some of the operators are denoted as
boolean. This means is that they will only have two
distinct values, true and false. Typically they are used
in 'if' statements, their actual values are 0 for false
and -1 for true, although in a boolean context (in an if
statement for example) any value other than 0 will be
treated as true and can be used as a boolean;

 VAR a = 20;

if(a) { do something }

 is legal and often very useful;

(...) Parens group subexpressions, and are used to force a

 SPIDER keywords 16

different order of precedence as needed; ' (a+b)*c '
makes sure the addition is performed before the
multiplication.

The following four operators are 'unary', they only
affect the subexpression immediately to the right of
them.

? : This operator leaves a true (-1 numerically) if the

variable to the right of it has changed since the last
time it was checked at this place. On a number it would
always leave a false, because the number doesn't
change over time.
For example:

distance = programchange[rawdist];

if(?distance) pgc(0,distance);

would read the supposed ultrasound distance variable
rawdist, convert it into a suitable program change
number through a previously defined table and then
sent it out as a midi program change command (on midi
channel one) only if the resulting value is actually
different from the last sent program change from
this location. SPIDER does not keep track of
program changes sent from other locations in the code,
the ‘changed’ operator works locally only.

! : Logical negation, if the subexpression immediately to

the right evaluates to true, it would be changed to
false, and vice versa. For example:

if(!sent) {

non(Mchannel,theNote, Velocity);

sent = TRUE;

}

Where sent, Mchannel, theNote and Velocity are all
previously declared variables.

~ : bitwise negation; every bit in the 16-bit result of the

subexpression to the right of the ~ will be flipped, 0 to
1 and 1 to 0; you will need this only very rarely.

-: negates the subexpression to the right, 1 becomes -1;

-20 becomes 20 etc.

The following five are the regular arithmetical
operators, they behave just as expected. It should be
noted that the division and modulus operators are

 SPIDER keywords 17

expensive in terms of execution speed. Whenever
possible, that is whenever ‘modding’ with a number of
the form 2n-1 (so with numbers like 3,7,15,31 etc) use
the & (and) operator , this will execute much faster.
Division by a number of the form 2n (2,4,8,16,32 etc)

should be done using the shift right (>>) operator.

expr / expr divide (11 / 3 evaluates to 3)

expr % expr take modulus (remainder after division)

expr * expr multiply

expr + expr addition

expr - expr subtraction

The next three are bit operators, these operators work
on the bit level and are useful to mask out midi
channels and such things. Bit manipulation needs a
working knowledge of the binary representation of
numbers in a computer .

expr & expr bitwise and

expr | expr bitwise or

expr ^ expr bitwise exclusive or

channel = channel & 15;

forces the variable channel into the range 0 - 15. The
SensorLab will actually take care of this when the var
should be out of range, but this is just an example,
right? Be aware that we’re talking bits here;

myVar = myVar & 16;

will not force myVar to be in the range 0 - 16, rather,
it will set it to either 16 or zero, depending on its
previous value.
The ‘exclusive or’ operator is very convenient to
‘toggle’ the state of a boolean variable;

var sustain = 0; // declaration of ‘sustain’

controlKeys.1.u: // entry point for a particular key

sustain = sustain ^ 127; // 127 becomes 0 and

ctr(0,64,sustain); // 0 becomes 127

end;

This small program will alternate between switching
sustain on midi channel one on and off.

 SPIDER keywords 18

The next two are also operators on the bit level; ‘ a >>
b’ shifts ‘a’ ‘b’ places to the right.

expr >> expr shift right

expr << expr shift left

The first of these provides an efficient way of dividing
by multiples of two; the latter of multiplying by
powers of two:

channel = 1;

while(channel & 15) {

non(channel,40,127);

channel = channel << 1;

}

will send note messages on midi channels 2, 3, 5, and 9
(remember that channels start counting at zero).

The next two operators compare the two
subexpressions on either side and are replaced by
either the maximum or the minimum of the two.

expr <> expr maximum

expr >< expr minimum

The remaining operators are all boolean, they evaluate
to a true or false, a -1 or a 0.

expr > expr greater than

expr < expr smaller than

expr >= expr greater than or equal to

expr <= expr smaller than or equal to

expr == expr equal

expr != expr not equal

expr1 && expr2 logical and

expr1 || expr2 logical or

The last two operators leave a true if both expr1 and
expr2 are true or in the or case if either expr1 or expr2
is true.

Lets give just one example for the last bunch:

 SPIDER keywords 19

if(a && distance > 150 && (pressure <= 10 || always == true))

a = false;

will set a to false when a is true, distance is bigger
then 150 and either pressure is smaller than or equal
to 10 or always is nonzero.

Again in order of precedence:

()
? ! ~ -
* / %
+ -
& | ^
>> <<
<> ><
> < >= <=
== !=
&& ||

 SPIDER keywords 20

Spider keywords

var <identifier> (= <number)(, <identifier> (=
number), ...);

var a;

var x,y,z;

var sustain = false;

var breath = 2, modulation = 1, pan = 10;

This keyword defines a basic 16 bit variable, it can later be
referred to by its name (the identifier). The optional
initialization can set the value the variable starts out with,
only after sending it to the SensorLab from SPIDER. Since
memory in the SensorLab is backed up by a battery, changes
to the contents of variables will survive power down and
reset situations. To set a variable to a know state after a
reset or a power up, you would have to include the
initialization statements in the reset routine:

reset:

sustain = false;

breath = 2;

modulation = 1;

pan = 10;

end;

In this declaration stage the right hand side of the
assignment can only be a simple number, no expressions at
this stage, the assignment is evaluated in SPIDER on your
mac, not in the SensorLab. The two reserved words true and
false count as simple numbers too; they are immediately
converted into -1 and 0 and are thus completely equivalent
to these numbers. In the SPIDER code proper variables are
assigned values using the assignment operator , the =
sign. Assignments take the form:

 a = <expr>;

See the section on expressions for examples.

csclock

This is a predefined variable, the centisecond clock. It is
simple 16 bit counter set to zero on a reset and thus reflects
the number of centiseconds since the last reset. Writing a
value to it will have it count upwards from that value.

 SPIDER keywords 21

table <identifier>;
table <identifier> [<numeric>,(<numeric>, ...)];

table convert [1,3,5,7,9,11,13,15,17,19,21,23,25];

table convert [lin,256,0,127];

table convert [1,2,3,4,5,6,7,8,9,ran,20,10,30,22];

table convertP;

Tables are data structures in the memory of the SensorLab
consisting of a predefined number of consecutive bytes (8 bit
numbers). The length of these tables is fixed when they are
defined and cannot be altered dynamically. The first three of
the examples initialize the tables. In cases where you don’t
need something specific in the table at the start, as in
defining a midi input buffer, use a lin,256,0,0 (see below). To
access an element in a table you use a 16 bit offset between
square brackets, no bounds checking is performed, you
should see to it that you don’t address anything beyond the
defined length of the table, you may be overwriting program
code for all you know! Negative offsets are allowed, if you
can find a use for them. A special table start_of_ram has
been predefined, allowing you access to the sensorlab’s 32k
or ram. See the appendix for the lab’s memory map and
internal data structures.

The last example defines a table pointer, this is a variable
only for table addresses, be they literal 16 bit addresses you
happen to know could be useful, or the name of a previously
defined table. After assigning an address of a table or a 16
bit number to one of these table pointers it can be used
just as if it were an ordinary table. Make sure to initialize a
table pointer before you use it, otherwise very
unpredictable things will happen.

<numeric> in the syntax definition stands for one of five
things:
• A simple 8 bit number, decimal or hexadecimal ($ -

prefix)
• a lin keyword; this word stands for linear and

defines a linear stretch of numbers. It takes the next
three numbers as parameters, first a length, then a
start value and lastly an end value

lin,256,0,127

defines 256 bytes of which the first is a 0, the last is a
127 and the 254 bytes between these two run linearly
between these two.

 SPIDER keywords 22

• a log keyword; this word stands for logarithmic
and defines a logarithmic stretch of numbers. It takes
the next three numbers as parameters, first a length,
then a start value and lastly an end value

log,100,0,127

defines 100 bytes of which the first is a 0, the last is a
127 and the 98 bytes between these two run steeply
up at first and step up to the end number in
increasingly small steps. This is useful when you’re
dealing with a sensor which has a logarithmic
response.

lo to hi (log,256,0,127):

hi to lo (log,256,127,0):

• an exp keyword; this word stands for exponential
and defines an exponential stretch of numbers. It
takes the next three numbers as parameters, first a
length, then a start value and lastly an end value

exp,1000,10,60

defines 1000 bytes of which the first is a 10, the last is
a 60 and the 998 bytes between these two start off
increasing with small steps, but taking increasingly
bigger steps towards the 60.

lo to hi (exp,256,0,127):

hi to lo (exp,256,127,0):

• a ran keyword; this word stands for random and
defines a random stretch of numbers. It takes the next
three numbers as parameters, first a length, then a
minimum value and lastly a maximum value;

ran,20,10,30

defines 20 random bytes, never lower than 10 and
never higher than 30.

Some examples:

__

 SPIDER keywords 23

analog LeftHandPressure,0,0,255,2,0,0,0;

table convert [lin,256,127,0];

LeftHandPressure.m1: // mode 1 of the analog channel entry

prs(0,convert[LeftHandPressure]);

end;

// send out midi pressure after molding the raw 8 bit

// sensor output into a range suitable for midi.

__

midi_non incomingNotes,omni;

table in_buffer[lin,100,0,0];

var index=0;

incomingNotes.m1: // entry point for note on events

in_buffer[index] = incomingNotes; // store note number

index = (index + 1) % 100; // keep index below 100

end;

// store the last 100 notes which have come in for later

__

var FirstTimerCurrentMode, TimeRemaining;

table FirstTimer;

reset:

FirstTimer = $8180; // address of first timer struct

end;

. . .

FirstTimerCurrentMode = 1 + FirstTimer[1];

TimeRemaining = FirstTimer[2] + (FirstTimer[3] << 8);

// time remaining until the first timer fires in 1/100 seconds

// remember table addressing mode only reads 8 bits, 16 bit values

// are stored low byte - high byte.

// It is a lot easier in the above example to just sa

// TimeRemaining = <timername>;

__

dgroup tableSelect[0/0,0/1,0/2];

table log_tab[log,100,0,0];

table lin_tab[lin,100,0,0];

table exp_tab[exp,100,0,0];

table TheTable;

tableSelect.1.u:

TheTable = log_tab;

end;

tableSelect.2.u:

TheTable = lin_tab;

end;

 SPIDER keywords 24

tableSelect.3.u:

TheTable = exp_tab;

end;

// the keys select (through their up- events) one of three tables

// for use in other sections of code

__

 SPIDER keywords 25

analog <ident>, <channel>, <lo>,<hi>,<minimal
change>,

<offset>,<gain>,<inv>;

ident
Is the name to be used in defining associated
code sections and accessing the sensor output
values;

ident.m1:
defines the program code, the m1 being
anything from m1 to m8;

ident (and ident[0])
accesses the latest available sample; ident [1]
accesses the previous sample, ident[2] ...
ident[8] give power users access to analog pa-
rameters to change them on the fly:

0 latest data byte (current value)
1 previous data byte
2 current mode
3 low threshold value
4 high threshold value
5 min difference threshold
6 attenuation (see appendix)

7 offset (see appendix)
8 aux (see appendix)

<channel>
Is the physical SensorLab analog in pin this
particular sensor is connected to. This runs
from 0 - 31.

<lo>
<hi>
<minchange>

threshold parameters, they control when an
actual ‘event’ is generated for this particular
sensor and the associated code is executed.
When the difference between the previously
triggering sample and the current one exceeds
the minchange value and the current value
is within the lo and hi range, then an event is
generated and code is executed.

The next three parameters condition the signal

 SPIDER keywords 26

into something the SensorLab can deal with.
The allowed voltages on the analog input pins
of the SensorLab can range from -8 to 8 volts.
The analog to digital converter on the
SensorLab, however, deals with signals from 0
to 5 volts only. So, for the best performance
you should knead the raw input values into the
0 - 5 volts range. The

<offset>
runs from -60 to 60, in 10th's of volts, so - 6.0
to 6.0 volts; this value is added to your signal
to move the signal up or down the scale. If, for
example, your sensor gives you values from 2
volts at the low end and 7 volts at the top you
would be able to move it into the desired 0 - 5
volts range by specifying an offset from -20 (-
2 volts). The

<gain>
runs from -7 (maximum attenuation, roughly
0.17 times) to 7 (maximum amplification, 10
times); this parameter stretches or shrinks the
range of your input. A positive gain expands
the sensor’s output signal, a negative gain
contracts it. Suppose for example your
sensor’s output (as measured by a multimeter)
is 2 volts at the low end and 3 volts at the top.
This is a range of only 1 volt, to be converted
into a range of 5. If you check the list below
you’ll see that a gain of 4 would very nearly do
the trick. This will give you a range of 2 to 6.7
volts. You’ll need a negative offset again to
move it down the scale toward the 0 - 5 volts
range.

gain: result:
-7 0.17 x
-6 0.25 x
-5 0.32 x
-4 0.40 x
-3 0.50 x
-2 0.63 x
-1 0.78 x
 0 1.00 x

 1 1.50 x
 2 2.20 x
 3 3.30 x
 4 4.70 x

 SPIDER keywords 27

 5 6.80 x
 6 8.20 x
 7 10.00 x

<inv>
is either zero or non-zero and inverts the
sensor's output when non-zero, a convenient
way of changing the up/down direction of a
sensor. Also it is sometimes necessary to bring
a signal within range: no offset is able to bring
a signal running from -3 to -8 volts to the
desired 0 - 5 volt range; inversion and a
negative offset of 3 volts will do the trick,
however.

Every physical input channel can have several logical
channels (as above) associated with it; you can for instance
apply two separate triggers to on analog input by defining
two analog sensors on the same channel with different lo
and hi parameters:

__

analog Pressure,0,0,200,2,0,0,0;

analog Trigger,0,220,230,7,0,0,0;

table convert [lin,200,0,127];

var VERYLOUD = 127;

Pressure.m1:

prs(0,convert[Pressure]);

end;

Trigger.m1:

non(0,40,VERYLOUD);

non(0,40,0); // switch off again immediately

end; // using non to switch off notes

// makes use of the sensor lab’s

// running status capability

__

This would give you a continuous pressure reading when
you apply pressure to a pressure sensitive device, and also
give you a trigger when pressing the device all the way
home. Both are, as you can see, attached to physical channel
0, thus reading the same sensor. The minimum change of the
second declaration is set at a rather high setting of 7 since
we’re only interested in the trigger in this example. In this
example the gain, offset and inv parameters are set to zero,
implying a perfect device, outputting a beautiful 0 to 5 volts
across the pressure range.

 SPIDER keywords 28

usound <name>,<start>,<length>,<min_change> (,
<name2>,<start2>, ...);

name.m1: (a label)
is the entry label for the SPIDER code (mode 1);

name (a variable)
accesses the latest available sample

Defines an ultrasound channel, measuring the distance
between an US transmitter and an US receiver. Parameters
between brackets are optional and define further 'active
zones' on the same physical ultrasound channel. The order in
which the ultrasound channels are defined corresponds to
their physical connection to the SensorLab; the first three
correspond to the three receivers listening to the first
transmitter, the following three use the three receivers with
the second transmitter.

The start point is the distance in centimeters where the
ultrasound channel starts generating events, the length
determines the length of the stretch in centimeters over
which the result variable will vary from 0 to 255;

USOUND distance, 10,210,2;

This will set up an active range of two meters starting at
10 centimeters from the receiver, an event will be triggered
when the difference between the current sample and the
previous sample exceeds a value of 2.

This is how you would set up an ultrasound channel to
control the velocity of notes generated somewhere else in
the program:

__

usound rawDistance,10,110,2;

var Velocity;

rawDistance.m1:

Velocity = rawDistance >> 1; // bring into 0 - 127 range

end;

__

Here we set up three ‘triggers’ for program changes:

__

usound Trig1,100,110,5, Trig2,150,160,5, Trig3,200,210,5;

Trig1.m1: // active from 100 cm to 110 cm ..

pgc(0,10);

 SPIDER keywords 29

end;

Trig2.m1: // active from 150 cm to 160 cm ..

pgc(0,20);

end;

Trig3.m1: // active from 200 cm to 210 cm ..

pgc(0,30);

end;

__

 SPIDER keywords 30

dgroup <groupname> [sl/sr(,sl/sr, sl/sr,)];

Defines a group of (digital) key sensors into a logical unit.
The <groupname> will be used in the rest of the file in
swap and scratch commands, and in the key program labels.
The scanline(sl)/scanread(sr) combinations can be
inferred from the physical connections to the SensorLab,
where sl ranges from 0 to 15 and sr ranges from 0 to 7 (See
SensorLab hardware manual).

Example:

__

DGROUP NoteKeys[1/0,1/1,1/2,1/3,1/4];

var Velocity=80;

NoteKeys.1.d:

 NON(1,64,Velocity);

 end;

NoteKeys.1.u:

 NOF(1,64,64);

 end;

 NoteKeys.1.m2.d:

 NON(1,76,Velocity);

 end;

NoteKeys.1.m2.u:

 NOF(1,76,64);

 end;

__

Valid key program labels will be:

NoteKeys.1.u through NoteKeys.5.u and

NoteKeys.1.d through NoteKeys.5.d

And, for mode 2 through 8, if used:

NoteKeys.1.m2.u through NoteKeys.5.m2.u and

NoteKeys.1.m2.d through NoteKeys.5.m2.d

To use a key as a ‘toggle’:

__

DGROUP SustKey[3/7];

var SusTain = false;

 SPIDER keywords 31

SustKey.u:

SusTain = SusTain ̂ 127;

ctr(0,64,SusTain);

end;

__

When using keys as a toggle you need to define a code
section only for one direction (either the up or the down
event of the key); when possible use the up event in this
situation, this reduces the chance of you making serious
errors when programming mode changes or execute
commands where the group swapped is the group which
does the swapping. This is just a piece of advice, when you
know what you are doing there is no reason not to use the
down event for toggle functions.

 SPIDER keywords 32

timer <ident>,<resolution>;

This statement defines one of the 16 possible timers in the
SensorLab, setting it up initially to fire every (resolution /
100) seconds. Ident is used, as before, as the entry label
for the code which is to be regularly executed (with the
mode extension m1 to m8).

Ident is at the same time defined as a special kind of
variable, assigning a 16 bit number to it will set the
resolution of the timer to the value assigned, reading from
this variable will give you the time remaining before the
timer will fire (in centiseconds).

As mentioned before, the timers are only as accurate as
you let them be, the system only checks to see if a timer has
timed out when it is not busy executing other code. So an
extremely long key program can easily hold up the execution
of a timer program. It is not easy to say what a ‘long’
program is, try things out to find the limits of the SensorLab.

To kill a timer, your only option is to swap it to an unused
mode; all mode programs not defined by the programmer
consist of a lonely end statement, so that nothing will
happen when you swap something to a mode which is not
defined.

__

timer Update,50;

Update.m1:

display(0,” “); // clear the display

if(Sustain) display(0,”S”);

if(Transpose) display(1,”T”);

if(Control) display(2,”C”);

if(MultiChannel) display(3,”M”);

end;

// this short program will update an attached 4 character

// display every half second to reflect the state of four

// variables

__

dgroup hit [5/6];

timer roll,1000;

var rolltime;

hit.1.d:

rolltime = 128; // used to keep track of current interval

roll = 128; // initialize timer to 128 centiseconds

 SPIDER keywords 33

swap roll,1; // make timer active

end;

roll.m1:

non(9,43,100); // send one note trigger,

non(9,43,0); // immediately switching it off (ok for drum

sounds)

rolltime = rolltime >> 1; // divide time interval by two

if(!rolltime) swap roll,8; // if interval is zero kill the timer

roll = rolltime; // make interval the new timer interval

end;

reset:

swap roll,8; // swap the timer to an unused mode,

end; // effectively shutting it up

// everything starts out in mode 1, after a reset that is why

// you have to manually swap to a ‘silent’ mode if so desired

__

 SPIDER keywords 34

midi_non
<ident>,<channel>;

midi_nof
<ident>,<channel>;

midi_pbd
<ident>,<channel>;

midi_pgc
<ident>,<channel>;

midi_prs
<ident>,<channel>;

midi_ctr
<ident>,<ctr>,<channel>;

midi_pkp
<ident>,<key>,<channel>;

These commands define midi inputs as events, they set the
SensorLab up to jump to a section of user-written code
whenever the specified command is seen on the midi input
port. Ident, as before, specifies the entry label to jump to
when the event occurs, it also gives access to the data of the
midi message that generated the event. The channel
specifies the midi channel on which the event should occur
before it triggers you program. The channels run from 0
through to 15, as everywhere in the SensorLab. In addition
you can specify the word ‘omni’ to indicate that every
channel is of interest. The midi continuous controller and the
poly key pressure definitions require you to give an extra
parameter, either the controller you’re interested in or the
specific key for the poly key pressure messages. After the
definitions the following scheme gives you access to the midi
parameters:

ident (or ident[0]) data byte #1 (key number f.i.)

ident[1] data byte #2 (velocity)

ident[2] status byte (for channel info in omni mode)

For midi_pgc and midi_prs the data byte #2 is not defined,
will read nonsense. The data bytes are reversed in the case
of ctr and pkp messages, Giving you easier access to
information you don’t already know. See the thru()
command.

__

midi_non notes_in,omni;

midi_nof off_notes_in,omni;

 SPIDER keywords 35

notes_in.m1:

non(notes_in[2] & 15, 127 - notes_in, notes_in[1]);

end;

off_notes_in.m1:

non(off_notes_in[2] & 15, 127 - off_notes_in,0);

end;

__

The above is a simple program to reverse the keyboard,
high notes on the left, low ones on the right. The channel is
preserved, it being retrieved from the status byte at offset
2, as is the velocity. Note on events with velocity zero are
used as note off events to make use of running status and
reduce the consumption of midi bandwidth. It is perfectly
legitimate to use the normal note- off midi message. Your
choice. The use of ‘& 15’ in the channel position is not
necessary, but clarifies the 4 bit output limit for channel
data.

__

midi_ctr breath,1,omni;

breath.m1:

prs(breath[2] & 15,breath);

end;

__

Change midi breath control messages into channel pressure
messages, note that the value of the breath message is
found at offset zero and can thus be addressed without any
brackets.

__

dgroup keys[0/0,0/1,0/2,0/3];

table buffer[lin,256,0,0];

var note,index=0;

midi_non note_in,0; // only listen to midi chan 1

note_in.m1:

buffer[index] = notes_in; // store incoming notes

index = index + 1 & 255; // keep index in bounds

end;

keys.1.d:

note = buffer[random(256)]; // select from buffer

non(0,note,100);

end;

__

 SPIDER keywords 36

This is a very simple minded example of how you could play
notes using somebody else’s material, as found on midi
channel 1.

 SPIDER keywords 37

call <program label>;

Calls subroutine program at <program label>. Execution
continues at <program label>, until a return statement is
executed. Then the execution of the program will continue
with the statement right after the call statement. Extra
care should be taken that a 'subroutine' i.e. a piece of code
starting with a label and ending with a return statement is
only executed through a call statement. A return
statement without matching call will definitely cause the
program to crash. Call's can be nested (calls to routines
from within a routine which was 'called' itself, or calls to the
executing routine itself - recursion -) to a depth of 128.

Example:

__

MyLabel:

...

call do_noton;

...

end;

do_noton:

non(1,NoteNr,Velocity);

return;

__

The section of code at 'MyLabel' somewhere calls the
subroutine 'do_noton'. When the 'do_noton' is finished (by the
return command), the rest of the code at ' MyLabel' will be
executed.

return;

See above.

 SPIDER keywords 38

display(expr1,expr2);
display(expr1, <string>);
displayr(expr1,expr2);
displayx(expr1,expr2);
displayl(expr1,expr2);

display(0,"string");

display(1,myVar);

displayx(myPos,30 + myVar);

displayl(0,myVar * yourVar);

Display a "string" or a variable at the position expr1 on the
ascii display. Positions will vary with the implementation; 0-
31 are defined, but need to be physically connected to the
SensorLab of course. Displayx displays the variable in
hexadecimal format at position pos. Both display and
displayx only display the least significant byte of a
variable; since most implementations only use a four
character display a decimal representation of a 16 bit value
would not fit, it being a maximum of five characters long.
Therefore only a hexadecimal 16 bit display command is
available, the displayl command. The displayr command
is mainly intended for users who use the display interface
for other i/o purposes and need to be able to send raw
values to the display interface. The 8 bit value supplied by
expr2 is sent out of the display port without any
interpretation, you only need it when you do.

A decimal number will always reserve three characters on
the display, a hexadecimal number two. Characters will be
overwritten only when that character position is accessed,
so displaying ‘10’ after displaying ‘100’ would not erase the
‘1’ from the number ‘100’ and leave the display displaying
‘110’. This is intentional, smaller numbers can in such a
manner be displayed without reserving 3 display positions
and more efficient use can be made of the display.

Examples:

__

display(0,"OKEE"); // The display will show: 'OKEE'

Value = 56;

display(0,Value); // The display will show: ' 56 '

displayx(2,Value); // The display will show: ' 38'

// to allways reliable display a decimal number:

 SPIDER keywords 39

display(0,” “); // three spaces

display(0,myNum);

end;

The statement to end all statements. It is the statement
which terminates a user event program, and signals the
SensorLab to stop executing the current sequence of code
and look for something else to do, wait for another event for
instance. If an end statement is omitted the SensorLab will
just continue executing until it does find one. Sometimes one
can make use of this (see goto) but in general it is an error.

 SPIDER keywords 40

execute <keygroupname>, <programlabel>;

Executes the key - up program for all the keys in

<keygroupname> which are currently in the -down- state,
as if the user actually released the keys. Then it executes the
code at label up to the first end statement, and
subsequently executes the key down programs for the
previously 'released' keys, making the SPIDER program
believe that the user pressed the keys again.

This command allows for a change in transposition or midi
channel, for instance, without having to think about hanging
notes because notes are switched off before the channel or
transposition is changed, assuming that note off commands
are programmed at the key up events of the keys in
<keygroupname>.

Example:

__

dgroup Shift [0/0,0/1];

dgroup Keys [2/0,2/1];

var Transposition = 60, NoteNr,Velocity=100;

_transposup: // of course this label may also

Transposition = 72; // have been named Transposup

end; // or transup or _hopsakee, but as

_transposdown: // a convention all labels to be

Transposition = 60; // jumped to from an EXECUTE, start

end; // with '_' (underscore)

Shift.1.d:

execute Keys,_transposup;

end;

Shift.1.u:

execute Keys,_transposdown;

end;

Keys.4.d:

NoteNr = Transposition + 3;

non(1,NoteNr,Velocity);

end;

Keys.4.u:

NoteNr = Transposition + 3;

non(1,NoteNr,0); end;

__

If key # 4 gets a down event, it will calculate the
corresponding note number and play the note. If the first key

 SPIDER keywords 41

of group 'Shift' is down, it executes the execute command
for the group 'Keys' to do a transpose up.

What happens is that the SensorLab will simulate key up
events for the keys in the group 'Keys' that are currently in
the -down- state, thus sending midi note off messages with
the old value of the variable 'Transposition', then execute the
code starting at the label '_Transposup', setting the new
transposition value and finally simulate the key down events
again, sending midi note on messages with the newly
calculated transposition.

 SPIDER keywords 42

goto <label>;

Continues program execution at <label>. Labels can be
defined anywhere in the file without restrictions and have
the form '<identifier>:' .

Example:

__

Keys.1.d: // Calculate the variable 'NoteNr'

NoteNr = 48; // and jump to label 'note_on'

goto note_on; // notice that no 'end' command is

// necessary now.

Keys.2.d:

NoteNr = 49; // ‘fall through’ to note_on

note_on: // Send midi note on messages on

non (1,NoteNr,Velocity); // the first three midi channels.

non (2,NoteNr,Velocity);

non (3,NoteNr,Velocity);

end;

__

 SPIDER keywords 43

if (expr) <comp-stmnt1>
if (expr) <comp-stmnt1> else <comp-stmnt2>

Conditional execution; <comp-stmnt> here means any one
semicolon terminated statement or a series of such between
braces '{' and '}'. If the expression evaluates to a non-zero
value comp_stmnt1 will be executed, if it is false (zero)
comp-stmnt2.

Examples:

__

if(sendModulation) // only send control information when

ctr(0,1,CurrentModulation); // ‘sendModulation’ is nonzero

end;

__

if(MyVal > 25)

non(1,60,MyVal); // If variable 'MyVal' is bigger than 25

else // send the midi note on event, if less than

non(1,60,0); // or equal 25, send the midi note off

 // event.

__

if(program == 10) {

program = 11;

pgc(0,11);

}

else if (program == 11) {

program = 12;

pgc(0,12);

}

else {

program = 13;

pgc(0,13);

}

__

In the last example, once a condition is met, no other
checks are made and execution continues after the last curly
brace.

 SPIDER keywords 44

led(expr,expr);

This switches one of the four the led outputs of the
SensorLab, the first expression evaluates to the led number,
and should thus be in the range 0 - 3, and the second expr is
read as a boolean, non-zero switches the led on, zero
switches the led off.

 SPIDER keywords 45

Midi output commands

non (expr,expr,expr);

Sends a midi note on message, expressions are channel,
note number and velocity. The channel is limited to the
numbers 0 - 15, corresponding to midi channels 1 to 16. The
other two expressions are limited to the range 0 - 127.

nof (expr,expr,expr);

Sends a midi note off message, expressions are channel,
note number and release velocity. See non.

ctr (expr,expr,expr);

Sends a midi continuous controller message, expressions
are channel, controller number and controller value. The
channel is limited to the numbers 0 - 15, corresponding to
midi channels 1 to 16. The other two expressions are limited
to the range 0 - 127.

pbd (expr,expr,expr);

Sends a midi pitch bend message, expressions are channel,
low value and high value. The low value is ignored by most
midi devices and should generally be set to 64 (the middle
value), the high value runs from 0 - 127 and has a ‘no pitch
bend’, a centre value of 64.

pkp (expr,expr,expr);

Sends a midi poly key pressure message, not much used,
but there if you need it. Parameters are channel, key number
and value.

pgc (expr,expr);

midi program change. Parameters are channel 0-15 and
program 0-127.

prs (expr,expr);

midi channel pressure, channel and pressure value are the
parameters.

 SPIDER keywords 46

sysex (expr,expr,...);

Sends out a system exclusive message, all values except
the first and last need to be in the 0 to 127 range. The sysex
header ($f0) and tail ($f7) are not added by the SensorLab,
and should be included by the user.

thru(expr);

This command switches between midi thru mode (when
expr evaluates to a non-zero value) and midi interpret mode
(when expr is zero). In the thru mode everything the
SensorLab finds on its input will be sent out unchanged. In
interpret mode the SensorLab will, on seeing a midi message
coming in, check to see if there are any declarations for this
midi message. If there are they will be dealt with, otherwise
the message finds its end in the SensorLab and nothing
happens.

 SPIDER keywords 47

random(expr)

Evaluates the expr and then returns a random number in
the range 0 - (expr - 1).

The random number generator has a sequence length of
65536, this means that after calling random 65536 times it
will start generating the same sequence again. See also
rseed.

Example:

__

MyValue = random(43); // Variable 'MyValue' now will be

// in the range 0 to 42.

// to obtain a random value between lo and hi:

MyValue = lo + random(hi - lo);

__

rseed(expr);

The rseed command primes the random generator, to get a
sequence of random numbers several times (that is: the
same sequence) use rseed with the same value; what this
value is is not important, it only matters that the value is the
same as the last time. At reset the SensorLab seeds the
random generator with the value $AAAA.

__

var value;

label:

rseed(1001);

value = random(10); // result, say, 7

value = random(10); // result, say, 2

rseed(1001);

value = random(10); // result again 7

value = random(10); // result again 2

value = random(10); // result, say, 3

rseed(1001);

value = random(10); // result again 7

__

scratch <keygroup>;

 SPIDER keywords 48

dgroup keys[0/0,0/1,0/2,0/3];

scratch keys;

Scratch is a command for dgroups only. It is fully
equivalent to a swap to the same mode as the group is
already in. Because of the simulated key up and -down
events this can be useful. It would, if the keygroup scrat-
ched was actually a keygroup sending notes, have the
effect of retriggering all notes for which the corresponding
keys have been depressed. Coupled to a change in distance
from an ultrasound event or a change in pressure from an
analog event, one can do the retriggering very fast, resulting
in sometimes interesting effects. This gets an extra
dimension when one changes something like the velocity of
the notes one is retriggering.

__

dgroup NoteKeys[0/0,0/1,0/2,0/3];

usound UltraSound,2,100,2;

table VelocityConversion[lin,256,1,127];

var Velocity=1;

UltraSound.m1:

Velocity = VelocityConversion[UltraSound]; // keep between 1 and 127

scratch NoteKeys;

end;

NoteKeys.1.d: // note on key 1

non(0,40,Velocity);

end;

NoteKeys.1.u: // note off key 1

non(0,40,0);

end;

 -- etc --

__

The above switches note on and off in response to an
ultrasound event, all the time adjusting velocity.

 SPIDER appendix 49

swap <identifier>,<expr>;

This command swaps any of the defined ‘inputs’ to one of
the eight modes, see the section on modes earlier. The
swappable things are:

usound,timer,analog,dgroup and midi_in
They are swapped by giving their identifier to the swap

command and specifying the mode, ranging from 1 to 8.
Dgroup swaps perform the release- and close simulation
as discussed under execute.

__

dgroup channel[0/0];

dgroup notes[1/0,1/1];

shift.1.d:

swap notes,2;

end;

shift.1.u:

swap notes,1;

end;

notes.1.d: // for keys mode 1 doesn’t need to be supplied

// but notes.1.m1.d would be fine

non(0,40,100); end; // channel 1 note on

notes.1.u:

non(0,40,0); end; // channel 1 note off

notes.2.d:

non(0,43,100); end; // channel 1 note on

notes.2.u:

non(0,43,0); end; // channel 1 note off

notes.1.m2.d:

non(1,40,100); end; // channel 2 note on

notes.1.m2.u:

non(1,40,0); end; // channel 2 note off

__

The shift key, when pressed makes the note keys transmit
on channel 2, rather than channel 1. When you press the shift
key with one or two note keys pressed as well, the
corresponding note off events will be sent on the proper
channels, before switching midi channel.

while(expr) <comp-stmnt1>

Executes <comp-stmnt1> (see above under if)

 SPIDER appendix 50

repeatedly until expr becomes false. This implies that
somewhere in <comp-stmnt1> something should happen
that influences the expr, otherwise you would end up with a
loop which would never exit and the SensorLab would never
execute anything else until a reset (it would ‘hang’).

__

var index;

table buffer[lin,256,1,1]; // fill table with 1’s

reset:

index = 0;

while(index < 256) { // clear buffer

buffer[index] = 0;

index = index + 1;

}

end;

__

 SPIDER appendix 51

Memory map & data structures

The SensorLab has 32k of rom, which is not accessible by
the user, and 32k of ram, running from address $8000 to
address $FFFF, in which system parameters, data structures
and the user code are held. The ram as a whole is
addressable through the predefined table ‘start_of_ram’.
Use assignments to elements of this table only if you know
exactly what you’re doing. In the monitor window there are
two commands which allow you to inspect the memory; the
first, inspect, allows you to check the SPIDER internal
image as it has been built by the last compile command. Just
type inspect, a space and a hexadecimal address. You will
be presented with 256 bytes from the internal image in the
monitor window. The second command, dump, requires a
two way midi connection between the SensorLab and your
mac, has the same syntax as the inspect command, but
shows you a page (256 bytes) from the SensorLab’s internal
ram. This is continuously updated to reflect changes in the
ram. To exit this mode just click the mouse. Try looking at
address $8000 (the ‘system page’) to see the centisecond
clock running.

Memory map

$8000system page, system parameters, address offsets to
data structures and memory validity check area.

$8100analog to digital data structure offsets, 64 addresses
of analog data structures, maximum.

$8180timer data structures, a maximum of 16 timer data
structures.

$8200midi in definition data structures, a maximum of 32
data structures describing the midi in subsystem.

$8300keygroup current modes, 128 numbers reflecting the
modes the keygroups are currenly in, the keygroup
offsets correspond to the order in which they are
defined.

$8500subroutine & swap stack
$8600SensorLab ‘virtual machine’ stack.
$8700keybits - reflect state of the digital keys
$8A00midi - in message flags
$8B00 user area (later than july 1993)
$9B00 user area (before august 1993)
$F700 midi buffers

 SPIDER appendix 52

Data structures

analog data (pointed to by addresses at page $8100)

offset content

0 physical channel (0-31)
1 latest data byte
2 previous data byte
3 current mode
4 low threshold value
5 high threshold value
6 event minimal change threshold
7 attenuation
8 offset
9 aux
10 mode 1 routine address
12 mode 2 routine address
14 mode 3 routine address
16 mode 4 routine address
18 mode 5 routine address
20 mode 6 routine address
22 mode 7 routine address
24 mode 8 routine address

The analog data structure is compiled in the user code area,
the analog identifier, as defined in the analog command,
point to offset no. Attenuation/Gain is calculated by SPIDER
through the following scheme:

Negative numbers are an attenuation, multiply by -1 and
use the result as an index in the following array :

255,228,203,181,162,144,128,114
This gives you the attenuation byte the lowest three bits of

the aux are cleared..
If the gain/att is positive it is simply copied into the

lowest three bits of the aux byte, the attenuation byte is set
to 255 in this case.

If the offset is negative bit 6 of aux is cleared, if it is
positive bit 6 of aux is set. The sign is then dropped. If the
resulting number is greater than 30 bit 5 of aux is set and
the (by now unsigned) offset is divided by two. If the
unsigned offset was smaller than or equal to 30 bit 5 of aux
is cleared. This leaves us with a possible 31 different
numbers which are then translated through the next array to
arrive at the number which is finally stored in the offset
byte of the above data structure.

 SPIDER appendix 53

0,48,65,81,93,104,114,124,132,141,148,
154,162,173,175,181,185,192,200,204,208,
220,239,242,243,246,248,250,252,255

timer data

The timer data structures are found from address $8180,
in the order in which they were defined. A write to the
timer identifier actually fills two consecutive addresses
with the value written: those at offset 2 and at offset 4.

 offset content

0 subcount
1 current mode
2 16 bit current count value
4 16 bit reload value
6 address of jump block

The jump block address points to eight addresses of the
eight routines for the timer in the eight different modes.

midi in data

These data structures are found at address $8200, again in
the order in which they were defined.

 offset content

0 data valid
1 data to wait for (pkp & ctr)
2 current mode
3 data byte no 1
4 data byte no 2
5 status byte
6 address of jump block

The jump block is the same as for the timer data
structure. At address $8A00 the first 112 bytes flag the
existence of a defined midi-input. If the highest bit of the
byte at <status / 16> is set, the remaining seven bits form
the number of the midi input definition structure at page $82.

 SPIDER appendix 54

If bit seven is not set, no input is defined for this particular
status byte.

usound data

The ultrasound data is compiled into the code section, the
six possible data structures are pointed to by addresses
which can be found from address $8020; first three for
transmitter 1 and then three for transmitter 2.
offset content

0 new distance high/low
2 previous distance high/low
4 command byte
5 zero cross point high/low
7 divide/multiply factor high/low
9 previously triggering value (for filter)
11 filter (minchange)
12 mode
13 address of jump block
15 current value high/low (pointed to by name)

If there is more than one definition for this ultrsound
channel then bytes 4 through 15 are repeated. The high bit of
the command byte is set if this is the last definition for this
ultrasound channel. The values are determined as follows:

zero = 120 + 30 * start;
div/mul = divmul = (10 * length) / 85; (if length > 250)
divmul = 65280 / (30 * cmm); (if length <= 250)
if length > 250 bit 1 of the command byte is set.

 SPIDER appendix 55

SensorLab opcodes

Internally the SensorLab works with tokens, implementing
a sort of virtual machine. The ‘machine works with a stack
and two ‘registers’. The register names are a and b. All
SPIDER code is translated into these tokens which are then
interpreted by a SensorLab ‘virtual machine’. Follow the
opcodes, where Ctl and Cth are the low respectively high
bytes of a constant; Hg and Lw are the high and low bytes of
an address and b16 and b8 indicate the witdh of a data
transfer. All numbers are hexadecimal.

coding
Move commands..

• move constant to a 10 Ctl Cth b16

• move constant to b 11 Ctl Cth b16

• move indirect to a 12 Hg Lw b16

• move indirect to b 13 Hg Lw b16

• move a to address 14 Hg Lw b16

• move b to address 15 Hg Lw b16

• move bth element at address to a 16 Hg Lw b8

• move a to bth element at address 17 Hg Lw b8

• swap a and b 18 b16

• push a 19 b16

• push b 1A b16

• pop a 1B b16

• pop b 1C b16

• move bth from address at address to a 1D Hg Lw b8

• move a to bth at address at address 1E Hg Lw b8

 SPIDER appendix 56

• push a 1F b8 (for i/o)

 SPIDER example 57

Arithmetical commands

• multiply a and b, result in a 20

• divide a by b, result in a 21

• take remainder of a div b, result in a 22

• sub b from a 23

• add b to a 24

• bitwise and a & b, result in a 25

• bitwise or a & b, result in a 26

• bitwise xor a & b, result in a 27

• shift left a, b places 28

• shift right a, b places 29

• maximum from a and b in a 2A

• minimum from a and b in a 2B

• random 0 -- <a> 2C

• leaves 1’s cpl from a in a 2D

• leaves 2’s cpl from a in a 2E

 Conditional & logic commands

 These commands all leave a boolean result in a; if the
condition holds true, -1 ($FF) will be left in accu a, if the
proposition is false a will be cleared.

• a is smaller than b 30

• a is smaller than or equal to b 31

• a is equal to b 32

• a is not equal to b 33

• a and b are true (nonzero) 34

• a or b or both are true 35

 SPIDER example 58

• negate a (-1 -> 0; 0 -> -1) 36

• a changed? 38

Program flow and control commands

• jump if a false 41 Hg Lw

• jump 43 Hg Lw

• jsr 44 Hg Lw

• rts 45

• swap keygroup #b to a 4A

• swap keygroup #a & execute code 4B Hg Lw

• scratch keygroup #a 4C

Midi commands

midi commands take their parameters off the stack in the
following order: second, first and channel when it is a three
byte message; data byte and channel in the case of a two
byte message.

• send note off 50

• send note on 51

• send poly key pressure 52

• send controller message 53

• send program change 54

• send channel pressure 55

• send pitch bend message 56

• send single byte out the midi port 57

• midi_thru on/off (state in a) 5F

Display commands

 SPIDER example 59

Display commands take a parameter from a, then a display
position from b.

• display in hex format 60

• display in decimal format 61

• display 8 bit raw format 62

• display boolean value 63

• switch on led (led # in b, state in a) 64

• display string 66 Ct Ct Ct ... FF

• display 16 bit hex pos in b val in a 67

 SPIDER example 60

Example:

The Midi Conductor, description and
program

Description:

The Midi Conductor (TMC) is an electronic instrument,
designed by Michel Waisvisz, which is capable of
transmitting midi to enable control of music synthesizers.
TMC consists of three parts, the instrument itself comprising
a left hand and right hand part, and the SensorLab.

The midi implementation of TMC:
- more than ten octaves pitch range
- velocity sensitive
- modulation control
- breath control
- volume control
- panning control
- sustain control
- aftertouch (channel pressure)
- pitch bend
- program changes

In the standard setup all midi is sent on midi channel 1, and
in a special mode it will send on midi channel 16.

The Instrument:

Left hand part:

12 switches, representing one octave. Pressing a switch
generates a midi note-on event, releasing the switch
generates a midi note-off event. The velocity information is

 SPIDER example 61

derived from the ultrasound receiver 1 (horizontal), which
measures the distance between the left and right hand. The
greater the distance, the higher the velocity.

The performer's left hand thumb can generate midi
aftertouch events by pressing the Aftertouch pad, send midi
program change events by clicking the Program Change
switches and control midi sustain by clicking either the
Sustain On, or the Sustain Off switch.

The Left hand Grip is removable, so individual grips can be
made to fit the player's hand size.

The left hand part of TMC also contains a second ultrasound
receiver, which is active when you hold this hand in vertical

 SPIDER example 62

position. Its functions depend upon which switch is pressed
on the right hand part of TMC.

Right hand part:

All the switches on the right hand part act as shift

 SPIDER example 63

switches: as long as a switch is held down, its function is
asserted.

When no right hand switch is pressed, the only function of
the right hand part of TMC is to provide the ultrasound signal
for the ultrasound receiver 1 on the left hand part. The
transmitter and the receiver must be directed towards each
other, and the distance between them determines the midi
velocity value to be used whenever a midi note event is
generated.

The Pitch Bend Enable switch transmits midi pitch bend
messages. The amount of pitch bend is controlled by the
angle the Sweep makes with the right hand grip. The greater
the angle, the higher the pitch bend value. The Sweep is
actually a telescoping antenna which can be changed in
length and thus will change the sweep frequency.

The Special Function Enable switch will transpose the midi
note events generated by the left hand keypad by one
octave (so note numbers 72 to 83) and send those events on
midi channel 16. These events can be used as special events
to control a dedicated computer program for example.

The Scratch Enable switch activates a function not found on
most other midi transmitting instruments. Whenever one or
more left hand keypad switches are pressed (so midi note-on
events are generated), and the distance between the
ultrasound transmitter and the ultrasound receiver 1
changes, those notes will be retriggered with their new
velocity values. This allows you to generate notes very
rapidly by changing continuously the distance between left
and right hand.

The Global Transpose Enable switch allows you to select a
new range for the midi note events as generated by the left
hand keypad. It actually functions as a transposition
controller. When the ultrasound transmitter and the
ultrasound receiver 2 (vertical receiver) are directed to each
other, the distance between them sets the midi note number
that the left hand keypad switch marked 'C' will generate.
The smaller the distance, the lower the note number. The
note number ranges from 0 to 127. The switches in the
keypad will still maintain their chromatic order, so if the
switch marked 'C' generates note number 23, then 'C#' = 24,
'D' = 25, etc.

When the left hand part is in horizontal position again, the
new octave range will still be active as long as the Global

 SPIDER example 64

Transpose Enable switch is pressed.

The Control Group 1 Enable will allow midi modulation
control messages to be sent by the ultrasound receiver 1 and
midi breath control messages sent by ultrasound receiver 2.
The smaller the distance, the smaller the value. The
ultrasound receiver 1 still functions to determine the note
event's velocity values.

The Control Group 2 Enable will allow midi panning control
messages to be sent by the ultrasound receiver 1 and midi
volume control messages via ultrasound receiver 2.

The smaller the distance, the smaller the value. The
ultrasound receiver 1 still functions to determine the note
event's velocity values.

If more than one of the enable switches is pressed, the
corresponding functions will still work, so you may scratch
while sending modulation and panning control messages all
at the same time.

This covers the functional description of The Midi
Conductor, following now is the SPIDER program text.

 SPIDER example 65

// 'Spider' file to be used with the Midi Conductor

// (c) 1991 by Frank Balde'

dgroup Notes[0/0,0/1,0/2,0/3,0/4,0/5, // the twelve note keys

 0/6,0/7,1/0,1/1,1/2,1/3];

dgroup ThumbLeft[1/7,1/6,1/5,1/4]; // the left hand thumb keys

dgroup Shift[2/0,2/1,2/2,2/3,2/4,2/5]; // the right hand shift keys

analog Rawpress,0,0,255,3,10,6,0; // the pressure pad sensor

analog Rawpb,1,0,255,3,-20,3,1; // the right hand sweep sensor

usound VerUS,15,75,3; // vertical ultrasound sensor

usound HorUS,15,75,3; // horizontal usound sensor

table lintab [lin,256,0,127]; // 7-bits table for cont. control

table veltab [lin,256,1,127]; // velocity table (no zero!)

table pbdtab [lin,256,64,127]; // pitch bend, only upwards

table trstab [lin,256,0,116]; // pitch transpose offset table

table invtab [lin,256,127,0]; // inverse table for prs. sensor

var Pressure,Velocity = 1; // some variables

var NoteNr;

var Preset;

var PitchBend;

var Control,VerControl;

var NewTrans,Transposition = 60;

var ScratchFlag = FALSE; // some flags

var ModBrtFLag = TRUE;

var PanVolFlag = FALSE;

var TransPoseFlag = FALSE;

var PitchBendFlag = FALSE;

var Ch1 = TRUE;

 SPIDER example 66

// ---------------------------- cont. sensors ---------------------------------

RawPress.m1: // handle raw pressure pad data

if(Ch1) // if flag 'Ch1' is TRUE, send it

 prs(0,invtab[RawPress]); // as aftertouch on midi chan. 1,

 else // else send it on chan. 16

 prs(15,invtab[RawPress]);

end;

HorUs.m1: // handle horizontal ultrasound

Velocity = veltab[HorUS]; // calculate the var 'Velocity',

 // to be used by the 'Notes' keys

if(ScratchFlag && Ch1) // if this flag and the Ch1 flag

scratch Notes; // is TRUE, scratch the notes

 if(ModBrtFlag) // if the right hand shift key

for

 { // modulation and breath control

 if(Ch1) // is down, the flag 'ModBrtFlag'

 ctr(0,1,lintab[HorUS]); // is TRUE, so also send midi

mod.

 else // events on either chan. 1 or 16

 ctr(15,1,lintab[HorUS]);

 }

 if(PanVolFlag) // same as above, but now for

 { // panning/volume control

 if(Ch1)

 ctr(0,10,lintab[HorUS]);

 else

 ctr(15,10,lintab[HorUS]);

 }

end;

 SPIDER example 67

 VerUS.m1: // handle the vertical ultrasound

 if(ModBrtFlag) // if necessary, send midi breath

 { // control on either chan. 1 or

16

if(Ch1)

 ctr(0,2,lintab[VerUS]);

 else

 ctr(15,2,lintab[VerUS]);

 }

 if(PanVolFlag) // same for midi volume

 {

 if(Ch1)

 ctr(0,7,lintab[VerUS]);

 else

 ctr(15,7,lintab[VerUS]);

 }

if(TransPoseFlag && Ch1) // if 'TransposeFlag' is TRUE,

and

 { // if playing on chan. 1, calc.

 NewTrans = trstab[VerUS]; // the transpose offset, and do

an

 // 'execute', to make sure we

have

 execute Notes,_transpose; // no hanging notes. _transpose

is

 } // the label of the code that

does

// the actual transposing, see

end; // below...

RawPB.m1:

{

 if(PitchBendFlag)

 {

 if(Ch1)

 pbd(0,64,pbdtab[RawPB]);

 else

 pbd(16,64,pbdtab[RawPB]);

 }

end;

 SPIDER example 68

// --------------------- 'execute' routines -----------------------------------

_transpose: // the actual transposition is

Transposition = NewTrans; // done here, because now all the

 end; // notes are 'off', and right

 // after this 'on' again, so no

// hanging notes

// ----------------------------- dgroup Notes----------------------------------

// ----------------------------- mode 1, down ---------------------------------

noton: // the general midi note-on

 non(0,NoteNr,Velocity); // command, 'Velocity' comes

 end; // from the hor. usound

Notes.1.d: // for each of the keys of group

 NoteNr = Transposition; // 'Notes', calculate the pitch

 goto noton; // it should play when down...

Notes.2.d: // the 'Transposition' is either

 NoteNr = Transposition + 1; // 60, or comes from the vert.

 goto noton; // ultrasound

Notes.3.d:

 NoteNr = Transposition + 2;

 goto noton;

Notes.4.d:

 NoteNr = Transposition + 3;

 goto noton;

Notes.5.d:

 NoteNr = Transposition + 4;

 goto noton;

Notes.6.d:

 NoteNr = Transposition + 5;

 goto noton;

Notes.7.d:

 NoteNr = Transposition + 6;

 goto noton;

Notes.8.d:

 NoteNr = Transposition + 7;

 goto noton;

Notes.9.d:

 NoteNr = Transposition + 8;

 SPIDER example 69

 goto noton;

Notes.10.d:

 NoteNr = Transposition + 9;

 goto noton;

Notes.11.d:

 NoteNr = Transposition + 10;

 goto noton;

Notes.12.d:

 NoteNr = Transposition + 11;

 goto noton;

// -------------------------------- mode 1, up --------------------------------

notoff: // the general midi chan. 1

nof(0,NoteNr,Velocity); // note-off command

 end;

Notes.1.u: // when a key from group 'Notes'

 NoteNr = Transposition; // changes from 'down' to 'up',

 goto notoff; // send the corresponding note-

off

Notes.2.u: // event

 NoteNr = Transposition + 1;

 goto notoff;

Notes.3.u:

 NoteNr = Transposition + 2;

 goto notoff;

Notes.4.u:

 NoteNr = Transposition + 3;

 goto notoff;

Notes.5.u:

 NoteNr = Transposition + 4;

 goto notoff;

Notes.6.u:

 NoteNr = Transposition + 5;

 goto notoff;

Notes.7.u:

 NoteNr = Transposition + 6;

 goto notoff;

Notes.8.u:

 NoteNr = Transposition + 7;

 goto notoff;

Notes.9.u:

 SPIDER example 70

 NoteNr = Transposition + 8;

 goto notoff;

Notes.10.u:

 NoteNr = Transposition + 9;

 goto notoff;

Notes.11.u:

 NoteNr = Transposition + 10;

 goto notoff;

Notes.12.u:

 NoteNr = Transposition + 11;

 goto notoff;

// ---------------------------- dgroup Notes ----------------------------------

// ---------------------------- mode 2, down ----------------------------------

Notes.1.m2.d: // in 'Mode' 2, all the keys from

 non(15,72,Velocity); // group 'Notes' send their note

 end; // events on chan. 16...

Notes.2.m2.d: // since in this mode, no global

 non(15,73,Velocity); // transpose is done, we can

enter

 end; // the 'hard' note numbers

Notes.3.m2.d:

 non(15,74,Velocity);

 end;

Notes.4.m2.d:

 non(15,75,Velocity);

 end;

Notes.5.m2.d:

 non(15,76,Velocity);

 end;

Notes.6.m2.d:

 non(15,77,Velocity);

 end;

Notes.7.m2.d:

 non(15,78,Velocity);

 end;

Notes.8.m2.d:

 non(15,79,Velocity);

 end;

Notes.9.m2.d:

 non(15,80,Velocity);

 SPIDER example 71

 end;

Notes.10.m2.d:

 non(15,81,Velocity);

 end;

Notes.11.m2.d:

 non(15,82,Velocity);

 end;

Notes.12.m2.d:

 non(15,83,Velocity);

 end;

// -------------------------- Mode 1, up --------------------------------------

Notes.1.m2.u: // the up events for 'Notes' in

 nof(15,72,Velocity); // 'Mode' 2, note-off events on

 end; // chan. 16

Notes.2.m2.u:

 nof(15,73,Velocity);

 end;

Notes.3.m2.u:

 nof(15,74,Velocity);

 end;

Notes.4.m2.u:

 nof(15,75,Velocity);

 end;

Notes.5.m2.u:

 nof(15,76,Velocity);

 end;

Notes.6.m2.u:

 nof(15,77,Velocity);

 end;

Notes.7.m2.u:

 nof(15,78,Velocity);

 end;

Notes.8.m2.u:

 nof(15,79,Velocity);

 end;

Notes.9.m2.u:

 nof(15,80,Velocity);

 end;

Notes.10.m2.u:

 nof(15,81,Velocity);

 end;

 SPIDER example 72

Notes.11.m2.u:

 nof(15,82,Velocity);

 end;

Notes.12.m2.u:

 nof(15,83,Velocity);

 end;

// ----------------------------- dgroup ThumbLeft -----------------------------

// ----------------------------- Mode 1, down ---------------------------------

// these keys have in common, that they don't use the 'up' event part

ThumbLeft.1.d: // when this key is down, it

Preset = (Preset + 1) & 127; // increments the 'Preset'

 // number and sends it on the

 // active midi channel (1 or 16)

 // if 'Preset' is bigger than

// 127, it becomes 0 again

 if(Ch1)

 pgc(0,Preset); // send the midi program change

 else

 pgc(15,Preset);

 end;

ThumbLeft.2.d: // same as above, but now it

 Preset = (Preset - 1) & 127; // decrements the preset

if(Ch1)

 pgc(0,Preset);

 else

 pgc(15,Preset);

 end;

ThumbLeft.3.d: // send a midi damper pedal-down

 if(Ch1) // event (sustain on)

 ctr(0,64,127);

 else

 ctr(15,64,127);

end;

 SPIDER example 73

ThumbLeft.4.d: // send a midi damper pedal-up

 if(Ch1) // event (sustain off)

 ctr(0,64,0);

 else

 ctr(15,64,0);

 end;

// ------------------------------ DGroup Shift --------------------------------

// ------------------------------ Mode 1, down --------------------------------

// these keys have in common that they activate a Midi Conductor function

// only as long as they are held down, so they act like shift keys

Shift.1.d: // allow pitch bend by the

'sweep'

 PitchBendFlag = TRUE; // sensor

 end;

Shift.2.d: // hor. usound changes will now

 ModBrtFlag = TRUE; // also send midi mod. , vert.

 end; // usound sends midi breath

Shift.3.d: // from now on all midi events

 Ch1 = FALSE; // will be send on chan. 16.

 swap Notes,2; // use the 'swap' command to

 end; // avoid hanging notes

Shift.4.d: // allow hor. and vert. usounds

 PanVolFlag = TRUE; // to send midi panning and

 end; // volume respectively

Shift.5.d: // allow notes to be 'scratched'

 ScratchFlag = TRUE;

 end;

Shift.6.d: // vert. usound can be used now

 TransPoseFlag = TRUE; // for global pitch transpose

 end;

// ------------------------------ Mode 1, up ----------------------------------

 SPIDER example 74

Shift.1.u: // disable pitch bend

 PitchBendFlag = FALSE;

 end;

Shift.2.u: // disable modulation/breath

 ModBrtFlag = FALSE;

 end;

Shift.3.u: // back to midi chan. 1 again,

use

 Ch1 = TRUE; // 'swap' for 'Notes' to avoid

 swap Notes,1; // hanging notes on chan. 16

 end;

Shift.4.u: // disable panning/volume

 PanVolFlag = FALSE;

 end;

Shift.5.u: // no more scratching

 ScratchFlag = FALSE;

 end;

Shift.6.u: // restore default transposition,

 TransPoseFlag = FALSE; // 'Notes' generate midi note

 NewTrans = 60; // events in the range 60-71

 execute Notes,_transpose; // (one octave)

 end;

// ------------------------- reset routine ------------------------------------

reset: // make sure that when the Sensor

 Preset = 0; // Lab is switched on, the Midi

 Ch1 = TRUE; // Conductor enters a defined

 Velocity = 1; // state by setting and resetting

 TransPosition = 60; // some flags and initializing

 ModBrtFlag = FALSE; // some variables

 PanVolFlag = FALSE;

 ScratchFlag = FALSE;

 TransPoseFlag = FALSE;

 PitchBendFlag = FALSE;

swap Notes,1; // make sure we're in 'Mode' 1

 end;

